复制文本
下载此文档
加入vip,每篇下载不到2厘

HJ 1264-2022 卫星遥感细颗粒物(PM2.5)监测技术指南

VIP免费
3.0 2024-06-05 0 0 2.05MB 12 页 1库币 海报
投诉举报
中华人民共和国国家生态环境标准
HJ 12642022
卫星遥感细颗粒物PM2.5)监测
技术指南
Technical guideline for fine particulate matter (PM2.5) monitoring
based on satellite remote sensing
本电子版为正式标准文本,由生态环境部环境标准研究所审校排版。
2022-07-14 发布 2023-01-15 实施
HJ 12642022
i
................................................................................................................................................................. ii
1 适用范围 ........................................................................................................................................................ 1
2 规范性文件 .................................................................................................................................................... 1
3 术语和定义 .................................................................................................................................................... 1
4 总则 ................................................................................................................................................................ 2
5 监测方法 ........................................................................................................................................................ 4
6 结果验证 ........................................................................................................................................................ 5
7 质量控制 ........................................................................................................................................................ 6
附录 A(资料性附录) PM2.5 浓度地理加权回归计算方法 ......................................................................... 7
HJ 12642022
ii
为贯彻《中华人民共和国环境保护法》《中华人民共和国大气污染防治法》防治生态环境污染,
善生态环境质量,规范和指导卫星遥感细颗粒物监测工作,制定本标准
本标准规定了卫星遥感细颗粒物监测的方法、结果验证、质量控制等内容。
本标准的附录 A为资料性附录。
本标准为首次发布。
本标准由生态环境部生态环境监测司、法规与标准司组织制订
本标准主要起草单位:生态环境部卫星环境应用中心、江苏省扬州环境监测中心。
本标准生态环境2022 714 日批准。
本标准自 2023 115 日起实施。
本标准由生态环境部解释
HJ 12642022
1
卫星遥感细颗粒物PM2.5)监测技术指南
1 适用范围
本标准规定了卫星遥感细颗粒物监测的方法、结果验证、质量控制等内容。
本标准适用于陆地区域卫星遥感细颗粒物监测工作,作为地面监测手段的补充,用于掌握大范围细
颗粒物空间分布规律及变化趋势。
2 规范性引用文件
本标准引用了下列文件或其中的条款。凡是注明日期的引用文件,仅注日期的版本适用于本标准
凡是未注日期的引用文件,其最新版本(包括所有的修改单)适用于本标准。
HJ 93
环境空气颗粒物PM10 PM2.5)采样器技术要求及检测方法
HJ 653
环境空气颗粒物PM10 PM2.5)连续自动监测系统技术要求及检测方法
HJ 655
环境空气颗粒物PM10 PM2.5)连续自动监测系统安装和验收技术规范
HJ 817
环境空气颗粒物PM10 PM2.5)连续自动监测系统运行和质控技术规范
3 术语和定义
下列术语和定义适用于本标准。
3.1
气溶胶光学厚度 aerosol optical depthAOD
从地面到大气层顶垂直路径中整层气溶胶消光系数的总和,量纲为 1
3.2
像元 PM2.5 浓度 pixel PM2.5 concentration
卫星观测 1个像元范围内的近地面大气细颗粒物平均质量浓度,计量单位μg /m3
3.3
行星边界层高度 planetary boundary layer heightPBLH
行星边界层也称摩擦层或大气边界层,是对流层的最下层,一般自地面1 km2 km 高度;行
星边界层高度是指从地面到行星边界层顶的高度,表示污染物在垂直方向能被热力湍流所扩散的范围。
3.4
地理加权回归 geographically weighted regressionGWR
一种用回归原理研究具有空间(或区域)分布特征的两个或多个变量之间数量关系的方法,在数
据处理时考虑局部特征作为权重。
HJ 12642022
2
4 总则
4.1 监测原理
根据 PM2.5 质量浓度与 AOD、吸湿增长因子、密度、半径、消光效率因子及行星边界层高度等因
素的转化关系计PM2.5 质量浓度PM2.5 质量浓度按公式(1)计算
M
PM2.5
4
3r
QAOD
PBLH f(RH)1
式中:M(PM2.5)—— PM2.5 质量浓度μg/m3
4/3——球形粒子体积计算常数,量纲为 1
ρ——PM2.5 平均密度,μg/m3
r——PM2.5 粒子有效半径,m
Q——PM2.5 子平均消光效率因子,量纲为 1
AOD——气溶胶光学厚度,量纲1
PBLH——行星边界层高度m
RH——环境空气相对湿度,%
f(RH)——气溶胶消光吸湿增长因子,量纲1
气溶胶消光吸湿增长因子按公式(2)计算:
f
(RH)=(1-RH/100)-g 2
式中:f (RH) ——气溶胶消光吸湿增长因子,量纲1
1——常数,量纲为 1
RH——环境空气相对湿度,%
100——同温度和气压下的饱和绝对湿度,量纲为 1
g——经验拟合系数,与气溶胶成分有关,一般可以取为 1
将公式(1)取自然对数变换为 PM2.5 质量浓度的多元线性回归关系式,见公式(3):
ln (M(PM2.5))=β0+β1ln (AOD)+β2ln (HPBL)+β3ln ( 1-RH/100) 3
式中:ln——自然对数运算;
β0β1β2β3——方程回归系数
M(PM2.5)—— PM2.5 质量浓度μg/m3
AOD——气溶胶光学厚度,量纲1
PBLH——行星边界层高度,m
RH——环境空气相对湿度,%
100——同温度和气压下的饱和绝对湿度,量纲为 1
公式(3)中参β0β1β2β3代表研究区域内的平均值,考虑到回归系数随空间位置的变化特
征,将公式(3)进一步扩展为卫星遥感监PM2.5 质量浓度的随空间回归模型,见公式(4):
ln (M(PM2.5(ui,vi)))=β0(ui,vi)+β1(ui,vi)ln (AOD)+β2(ui,vi)ln (HPBL)+β3(ui,vi)ln ( 1-RH/100) 4
式中:ln——自然对数运算;
M(PM2.5)—— PM2.5 质量浓度μg/m3
ui——i个(=1,2,,n)训练样本的地理横坐标,量纲1
HJ 12642022
3
vi——个(i=1,2,,n)训练样本的地理纵坐标,量纲1
β0β1β2β3——随不同空间位置变化的方程回归系数;
AOD——气溶胶光学厚度,量纲1
PBLH——行星边界层高度,m
RH——环境空气相对湿度,%
100——同温度和气压下的饱和绝对湿度,量纲为 1
根据公式4采用地理加权回归方法结PM2.5 质量浓度地面监测样本数据,即可计算像元 PM2.5
浓度。
4.2 输入数据选择
本标准所用输入数据包括多光谱卫星遥感数据气象参数及地面监测数据。其中多光谱卫星遥感
数据的波段应包0.47 μm 附近和 0.66 μm 附近的可见光波段0.86 μm 附近的近红外波段、2.1 μm
近的短波红外波段和 12 μm 附近的远红外波段;气象参数包括行星边界层高度、环境空气相对湿度
个数据;地面监测数据包括监测点位PM2.5 质量浓度小时均值及相应的地理坐标。
4.3 监测内容
陆地区域 PM2.5 质量浓度及分布。
4.4 监测流程
根据卫星遥感数据源的特点,综合利用暗目标算法、深蓝算法等反演方法从卫星遥感光谱数据中
获取区域 AOD 结果同时,从气象模式资料中提取出气溶胶垂直订正和湿度订正所需要的行星边界层
高度和相对湿度数据,结合地面监测资料,采用地理加权回归方法逐像元计PM2.5 质量浓度,获取陆
地区域 PM2.5 质量浓度分布结果。
陆地区域 PM2.5 质量浓度卫星遥感监测的一般流程如图 1示:
数据匹配
边界层高度、
相对湿度
回归系数获取
地面PM2.5监测
数据
气溶胶光学厚度反演气象模式资料
卫星遥感数据
像元PM2.5浓度计算
区域PM2.5浓度输出
1 陆地区域 PM2.5 质量浓度卫星遥感监测流程图
HJ 12642022
4
5 监测方法
5.1 AOD 遥感反演
利用卫星遥感数据,采用暗目标法和深蓝算法反演获取目标区域无云陆地像元的 AOD,卫星遥
反演流程如下:
像元判别
暗目标算法 深蓝算法
区域气溶胶光学
厚度结果
查找表
卫星遥感数据
遥感数据预处理
地表反射
率库
查找表
2 卫星遥感反演 AOD 流程图
开展 AOD 遥感反演,主要包括以下七个步骤:
a 查找表。利用辐射传输模型结合卫星传感器可见光和近红外波段的光谱响应函数构建查找表;
b 地表反射率库。利用历史地表反射率数据(如 MOD09合成先验地表反射率库,用于亮像元
AOD 遥感反演;
c 遥感数据预处理对卫星遥感数据进行质量检查、辐射定标及几何校正然后计算可见光
红外和短波红外波段的表观反射率及远红外波段的亮度温度,并进行云、水体像元识别去除,
提取目标区域无云陆地像元;
d 像元判别。根据卫星探测的短波红外波段2.1 μm 附近)表观反射率,将无云陆地像元分为
暗像元和亮像元两类;
e 暗像元 AOD 计算。针对暗像元,采用暗目标算法结合查找表进行 AOD 反演计算
f 亮像元 AOD 计算。针对亮像元,采用深蓝算法结合地表反射率库及查找表进行 AOD 反演计
算;
g 区域 AOD 输出。将暗像元 AOD 和亮像AOD 合并输出为全区域 AOD 果。
PM2.5 卫星遥感监测工作中,如无条件开展 AOD 遥感反演工作,也可采用官方发布MOD04
HJ 12642022
5
MCD19A2 AOD 数据产品作为卫星遥感细颗粒物计算模型的输入参数。
5.2 气象资料提取
从气象模式(如全球气象预报模式Global Forecast SystemGFS和中尺度天气预报模式Weather
Research and ForecastingWRF)等资料中提取出区域行星边界层高度和相对湿度数据,并按 AOD
空间分辨率采用双线性插值方法进行重采样。
5.3 数据匹配
利用地面监测站点的 PM2.5 质量浓度数据与区域 AOD、气象资料进行时间和空间上的卫星—模式
—地面多源数据匹配,形成输入数据集。
a PM2.5 质量浓度地面监测站点所在地理坐标为中心,根据卫星监测时间,考虑大气气溶胶移
动速度(一般微风情况下,溶胶移动速度约为 3 m/s5 m/s和卫星遥感像元邻近效应
取中心位置周15 km 范围和监测时间前后各半小时区间内AOD、行星边界层高度和相
湿度有效结果,并计算平均值。
b 根据附录 A中公式(A.3)构建 PM2.5 质量浓度、AOD、行星边界层高度和相对湿度输入数
集。
5.4 回归系数获取
根据监测原理形PM2.5 质量浓度矩阵计算公式,见公式(5):
Y
=
X
β 5
式中:Y——因变量矩阵,构建形式见附录 A
X——自变量矩阵,构建形式见附A
β——回归系数矩阵,构建形式见附A
回归系数矩阵β根据地理加权方法(原理见附录 A求解。设定高斯函数作为权重计算方法,采
交叉验证方法获取最优带宽,并计算获取回归系数矩阵β
陆地区域 PM2.5 质量浓度回归系数采用普通克里金插值方法(采用插值处理软件默认参数半变异
函数为球状模型搜索半径为邻近 12 样本点)取。根据回归系数矩阵β每一列按照对应的地理坐
标信息依据 AOD 的空间分辨率进行空间插值,即可得到区域连续的回归系数
5.5 陆地区域 PM2.5 量浓度计算
根据目标区域中每个像元对应的 AOD、行星边界层高度、相对湿度以及回归系数,结合公式(5
逐像元计算Y值,并计算像元 PM2.5 浓度,见公式(6):
M(PM2.5)=exp (Y) 6
式中:M(PM2.5)—— PM2.5 质量浓度μg/m3
exp——e为底的指数函数;
Y——像元回归因变量。
将所有计算像元 PM2.5 浓度按照卫星遥感数据的投影方式和地理坐标系统存储形成陆地区域 PM2.5
质量浓度结果。
6 结果验证
采取十折交叉验证方法验证卫星遥感获取的陆地区域 PM2.5 质量浓度监测结果。根据 5.3 形成的输
HJ 12642022
6
入数据集,将其按等比例随机分成 10 个数据子集,10 次轮流选取其1个数据子集作为测试比对数
据,其他 9个子集作PM2.5 质量浓度反演训练样本数据,依据本标准PM2.5 质量浓度反演模型采用
训练样本数据计算回归系数,然后根据该回归系数采用测试比对数据计算像元 PM2.5 浓度遥感计算结果,
将遥感结果和地面监测值进行线性相关分析并计算决定系数R2和相对精度RA用于评估 PM2.5
质量浓度预测结果在实际应用中的准确性。
在利用卫星遥感细颗粒物进行监测分析应用时结果验证应满足决定系数R2大于 0.7 且相对
度(RA)高70%决定系数(R2)和相对精度(RA)计算方式分别见公式7)和公式(8):
R2(
-)2
n
i=1
(y-)2
n
i
=1  7
式中:R2——决定系数,量纲为 1
yi
——像元 PM2.5 浓度遥感计算结果,μg/m3
y——区域内所有地面监PM2.5 质量浓度的平均值,μg/m3
yi——个(i=1,2,,)地面站PM2.5 质量浓度监测值,μg/m3
RA=1yiyi
n
i=1
 
n
i1100%  8
式中:RA——相对精度%
yi
——像元 PM2.5 浓度遥感计算结果,μg/m3
y——区域内所有地面监PM2.5 质量浓度的平均值,μg/m3
yi——i个(i=1,2,
,n)地面站PM2.5 质量浓度监测值,μg/m3
7 质量控制
7.1 卫星数据质量
在进行遥感数据预处理前要保证卫星遥感原始数据的质量,避免有噪声条带的数据参与后续处理,
导致结果产生误差。同时,要保证相应的几何定位数据质量,在利用不同卫星及传感器的遥感数据前,
确保地理位置的几何配准精度在一个像元之内
7.2 输入参数精度
为提高 PM2.5 质量浓度遥感监测结果的准确性,一方面要采用较为成熟的气象预报模式模拟数据(如
GFSWRF 等)保证行星边界层高度和相对湿度的相对精度均80%以上;另一方面保证输入的地面
PM2.5 质量浓度监测数据可靠,监测数据来自国家或省级生态环境监测部门正式公布结果,监测采样仪
器、自动监测系统、安装验收和运行质控等技术要求分别符合 HJ 93HJ 653HJ 655 HJ 817 的规定,
同时保证监测点位足够且分布相对较均匀,一般 1×104 km2内至少3个地面监测点位的 PM2.5 量浓
度监测资料,部分 PM2.5 质量浓度分布空间差异较大且地面环境空气质量监测网络较发达的地区,可适
当提高至 1×104 km2内有 5个地面监测点位的 PM2.5 质量浓度监测资料。
HJ 12642022
7
A
(资料性附录)
PM2.5 质量浓度地理加权回归计算方法
公式(5)中因变量矩阵Y、自变量矩阵X 回归系数矩阵 β根据匹配后的数据构建,其中因变
量矩阵Y
构建形式见公式(A.1):
Y=ln (M(PM2.5(u1,v1)))
ln (M(PM2.5(u2,v2)))
ln (M(PM2.5(un,vn))) A.1
式中:Y——因变量矩阵;
M(PM2.5(ui,vi))——i个(i=1,2,
,n)训练样本的 PM2.5 质量浓度,μg/m3
n——训练样本数量;
ui——i个(i=1,2,,n)训练样本的地理横坐标
vi——i个(i=1,2,,n)训练样本的地理纵坐标
自变量矩阵Y
构建形式见公式(A.2):
X =
ln (AOD(u1,v1))
ln (AOD(u2,v2))
ln (AOD(un,vn))
ln (PBL
(u1,v1))
ln (PBL
(u2,v2))
ln (PBL
(un,vn))
ln ( 1-RH(u1,v1)/100)
ln ( 1-RH(u2,v2)/100)
ln ( 1-RH(un,vn)/100)
A.2
式中:X——自变量矩阵;
AOD(ui,vi)——i个(i=1,2,,n)训练样本AOD,量纲1
PBL
(ui,vi)——i个(i=1,2,,n)训练样本的行星边界层高度,m
RH(ui,vi)——i个(i=1,2,,n)训练样本的相对湿度,量纲为 1
100——同温度和气压下的饱和绝对湿度,量纲为 1
n——训练样本数量;
ui——i个(i=1,2,,n)训练样本的地理横坐标
vi——i个(i=1,2,,n)训练样本的地理纵坐标
回归系数矩阵 β建方式见公式(A.3):
β=
β0(u1,v1)
β1(u1,v1)
β2(u1,v1)
β3(u1,v1)
β0(u2,v2)
β1(u2,v2)
β2(u2,v2)
β3(u3,v3)
β0(un,vn)
β1(un,vn)
β2(un,vn)
β3(un,vn)
A.3
式中:β——回归系数矩阵
β0(ui,vi)β1(ui,vi)β2(ui,vi)β3(ui,vi)——个训练样本的回归系数;
n——训练样本数量;
ui——i个(i=1,2,,n)训练样本的地理横坐标
vi——i个(i=1,2,,n)训练样本的地理纵坐标
回归系数矩阵 β般通过地理加权方法获取。先计算两个样本之间的距离,见公式A.4):

标签: #技术

摘要:

中华人民共和国国家生态环境标准HJ1264—2022卫星遥感细颗粒物(PM2.5)监测技术指南Technicalguidelineforfineparticulatematter(PM2.5)monitoringbasedonsatelliteremotesensing本电子版为正式标准文本,由生态环境部环境标准研究所审校排版。2022-07-14发布2023-01-15实施*K-(Û¯F发布HJ1264—2022i目次前言.......................................................................................

展开>> 收起<<
HJ 1264-2022 卫星遥感细颗粒物(PM2.5)监测技术指南.pdf

共12页,预览12页

还剩页未读, 继续阅读

温馨提示:66文库网--作为在线文档分享平台,一直注重给大家带来优质的阅读体验;让知识分享变得简单、有价值;海量文档供您查阅下载,让您的工作简单、轻松而高效! 1. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。 2. 66文库网仅提供信息存储空间,仅对广大用户、作者上传内容的表现方式做保护处理,对上传分享的文档内容本身不做任何修改或编辑,并不对下载的任何内容负责。 3. 广大用户、作者上传的文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。 4. 本站不保证、不承担下载资源内容的准确性、安全性和完整性, 同时也不承担用户因使用下载资源对自己和他人造成任何形式的伤害或损失。
分类:法规文献 价格:1库币 属性:12 页 大小:2.05MB 格式:PDF 时间:2024-06-05
/ 12
客服
关注